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ABSTRACT: This contribution presents an analysis of the
problem of diffusion through membranes, incorporating a
realistic downstream boundary condition. The analysis can
be applied to operations involving geomembranes. Graphs
are presented to show the effect of the various dimensionless

parameters. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96:
1200–1203, 2005
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INTRODUCTION

Due to the low cost of production and their strength,
geomembranes are widely used as barriers, buffers,
liners, and sealants against pollutants. Several re-
search papers address the problem of diffusion
though geomembranes.1–3 The problem of diffusion
though geomembranes has been discussed for the case
where the concentration of the pollutant on the down-
stream side of the membrane is assumed to be 0.1,3,4

This type of boundary condition is ideally suited for
experimental verification. In real life, however, the
pollutant permeation through the membrane may be
seeping into another medium. Here, we present a
theoretical study of the case where the boundary con-
dition on the downstream side of the membrane is a
flux, proportional to the concentration.3,5

Mathematical formulation

We follow the mathematical model developed by Co-
hen.6,7 The chemical potential � is assumed to be a
function of the concentration c and the stress �. The
governing equation for the process of diffusion is

�c
�t � � � ���

�c �c �
��

��
��� (1)

We assume that � is a function of c and � [i.e., � � �(c,
�)]. As a first approximation, we assume that ��/�c

and ��/�� are the constants D and E, respectively.
Equation (1) then reduces to

�c
�t � D�2c � E�2� (2)

In addition, we need a constitutive equation relating �
to c. We choose an equation of the Jeffrey’s type,8

given by

��

�t � �� � �1

�c
�t � �2

�2c
�t2 (3)

where � is a constant, which can be considered to be
the reciprocal of a relaxation time; �1 and �2 are con-
stants. A Maxwell-type model is obtained by setting �2
� 0. If the polymer is in the glassy state, � is small and
negligible; however, in the rubbery state, � cannot be
neglected. We will assume that the membrane is in a
rubbery state for our present investigation. We also
note that if E � 0, eq. (2) reduces to Fick’s law. Let us
consider the one-dimensional diffusion through a
membrane of thickness l. The diffusion is assumed to
be in the x direction and the surface at x � 0 is kept at
the saturation concentration cs. Initially c and � are
assumed to be 0 and at x � l, the flux �c/�t � �c.

We now introduce the following nondimensional
quantities:

c* �
c
cs

, x* �
x
l , �* �

�

�1cs
, t* � �t,

	1 �
D
l2�

, 
2 �
E�1

l2�
, 	3 �

�2�

�1
, �* � �l
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We will suppress the superscript * in the sequel. Equa-
tions (2) and (3) in dimensionless form are

�c
�t � 	1

�2c
�x2 � 	2

�2�

�x2 (4)

��

�t � � �
�c
�t � 	3

�2c
�t2 (5)

The initial and boundary conditions are

c�x,0� � 0, ��x,0� � 0, c�0,t� � 1,

�c
�x �1,t� � �c�1,t� (6a–d)

Solution

Eliminating � from eqs. (4) and (5), we get

�2c
�t2 �

�c
�t � 	1

�2c
�x2 � �	1 � 	2�

�3c
�x2�t � 	2	3

�4c
�x2�t2 (7)

Assuming c � X(x)T(t) (separation of variables
method), we obtain

T� � T�

	1T � �	1 � 	2�T� � 	2	3T�
�

X�

X�
� ��2 (8)

where � is a parameter. For � � 0, the appropriate
solution satisfying the boundary conditions is

X0 � 1 �
�

1 � �
x, T0 � 1, 0 
 � 
 1 (9)

We assume that X�(0) � 0 and X�� � �X�(1) for other
(nontrivial) values of the parameter �. Thus, � � �s, s
� 1, 2, 3. . . and Xs � sin �sx and Ts � Ase

�
1(s)t 	
Bse

�
2(s)t, where �s are the roots of the transcendental
equation

� tan � � � (10)

Thus,

XsTs � Ase�
1�s�t � Bse�
2�s�t sin �sx (11)

where


1,2�s� �


1 � �	1 � 	2��s
2� �

�
1 � �	1 � 	2��s
2�2 � 4�s

2	1�1 � 	2	3�s
2�

2�1 � 	2	3�s
2�

(12)

We note that the characteristic functions of sin �sx are
orthogonal. The complete solution for c is then given
by

c�x,t� � 1 �
�

1 � �
s

� �
s�1

�


Ase�
1�s�t � Bse�
2�s�t�sin �sx (13)

Using the orthogonality of sin �s and the initial con-
dition, we have

As � Bs �
2

�s
1 � ��1 � �2�s
2��

(14)

We need one more relation between As and Bs to
determine the solution completely. This relation is
obtained by solving for �, using eqs. (5) and (13), and
then by insuring compatibility of the solutions for c
and � with respect to eq. (4). Substituting the expres-
sion (13) for c in eq. (5), we have

��

�t � � � � �
s�1

�


Ase�
1�s�t � Bse�
2�s�t�sin �sx

� 	3 �
s�1

�


As
1
2�s�e�
1�s�t � Bs
2

2�s�e�
2�s�t�sin �sx (15)

The solution for eq. (15) is

� � �
s�1

� �Ase�
1�s�t � Bse�
2�s�t

1 � 
1�s�
�e�
2�s�t � e�t�

�
Bs
2�s��	3
2�s� � 1�

1 � 
2�s�
�e�
2�s�t � e�t��sin �sx (16)

Substituting solutions (13) and (16) into eq. (4), we
obtain one new equation

As
1�s��	3
1�s� � 1�

1 � 
1�s�
�

Bs
2�s��	3
2�s� � 1�

1 � 
2�s�
� 0 (17)

Solving for As and Bs from eqs. (14) and (17), we have

As �
�2�1 � 	2	3�s

2�2
1 � 
1�s��
	3
2�s� � 1�
2�s�

�s�	3 � 1��
1 � �	1 � 	2��s
2�2 � 4�s

2

	1�1 � 	2	3�s
2�

Bs �
�2�1 � 	2	3�s

2�2
1 � 
2�s��
	3
1�s� � 1�
1�s�

�s�	3 � 1��
1 � �	1 � 	2��s
2�2 � 4�s

2

	1�1 � 	2	3�s
2�

(18)
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The mass of penetrant Q(t) in the membrane at any
time is

Q�t� � �
0

1

c�x,t�dx (19)

which yields

Q�t�
Q���

� 1 �
2�1 � ��

2 � �
�
s�1

� 1
�s

� 
Ase�
1�s�t � Bse�
2�s�t��1 � cos �sx) (20)

where Q(�) is the value of Q(t) as t3 �. The flux F at
time t leaving the surface x � 1 is given by

F � �D
�c
�x�x�1 � �

D�

1 � �

� D �
s�1

�

�s
Ase�
1�s�t � Bse�
2�s�t��cos�sx� (21)

DISCUSSION

Figures 1-3 show flux versus time profiles predicted
by eq. (21) for values of � � 0.01. These figures show
a profile where the flux has a maximum and will reach
steady state at a later time. Experimental work for the
permeation of acetone though elongated nitrile rubber
and the permeation of dichloromethane through PVC
exhibited similar behavior even though the boundary
conditions of the experimental data differ from the
mathematical model presented in this article.1,9–11

While the experimental data are associated with a

negligible concentration of the permeant on the down-
stream side of the membrane, this mathematical
model considers a constant flux.

Figure 1(a,b) shows the effect of parameter 	1 on the
predictions of eq. (21). The value of 	1 is increased
from 0.3 to 0.9 while keeping 	2 and 	3 equal to unity.
Figure 1(a) indicates that the flux increases and the
time to reach the maximum flux decreases with in-
creasing 	1. This behavior is in agreement with exper-
imental data as 	1 is proportional to D, the molecular
diffusion coefficient.12,13 Figure 1(b) is a zoom out of
Figure 1(a) for shorter normalized times. As shown in
Figure 1(b), the breakthrough time decreases as the
values of 	1 increase. The breakthrough time has been
experimentally correlated to the thickness of the mem-
brane for various polymer-solvent systems, so the

Figure 2 Effect of 	2 on normalized flux versus normalized
time. 	1 � 1.0, 	3 � 1.0, 	2 � � 0.9, f 0.7, E 0.5, F 0.3.

Figure 1 (a) Effect of 	1 on normalized flux versus normalized time. 	2 � 1.0, 	3 � 1.0, 	1 � � 0.9, f 0.7, E 0.5, F 0.3. (b)
Effect of 	1 on normalized flux at shorter normalized times. 	2 � 1.0, 	3 � 1.0, 	1 � � 0.9, f 0.7, E 0.5, F 0.3.

1202 PURI, HINESTROZA, AND DE KEE



trend predicted by eq. (21) also agrees with experi-
mental data as transport through thinner membranes
exhibits shorter breakthrough times.11,14

Figure 2 shows the effect of parameter 	2 on the
predictions of the mathematical model presented in
this work. The value of 	2 is increased from 0.3 to 0.9,
while keeping 	1 and 	3 equal to unity. Figure 2 indi-
cates that the flux as well as the time to reach a
maximum flux increase with increasing values of 	2.
The increase in flux is in agreement with experimental
data, as a larger 	2 implies a larger effect of E, the
elastic diffusion coefficient, on the transport of chem-
icals through polymeric membranes. This prediction
may be useful in explaining previously reported cases
of stress-enhanced transport.10,11,14 An increase in 	2
also increases the time to reach a maximum flux. This
prediction is also in agreement with experimental data
as an increase in mechanical deformation of the poly-
meric membrane implies an alignment of the polymer
chains and hence an increase in localized crystallinity.
This morphological change, increasing the value of E,
causes the transport of the solvent to be slower so the
time to reach a maximum flux decreases.14–16

Figure 3 shows the effect of parameter 	3. The flux-
time behavior predicted for different 	3 is very similar
to the one exhibited by 	2. An increase in flux as well
as larger times to reach a flux maximum result with an
increasing 	3, while keeping 	1 and 	2 equal to unity.
This behavior is explained as 	3 is a function of �1 and
�2, which is a measure of the viscoelastic behavior of
the polymer membrane.

We expect that experiments obeying the set of
boundary conditions used in this work will exhibit
similar flux versus time profiles.

In summary, the mathematical procedure devel-
oped in this article, and the resulting flux versus time,
eq. (21), could be used to model and predict the effect
of mechanical deformation on the transport of sol-
vents through polymeric membranes.
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